第1回小問模試・第7問 答え
次の問題に答えなさい。
底面が半径 $4cm$ の円である円すいの体積が、半径が $3cm$ の球の体積と等しいとき、円すいの高さは何 cm か。
答え
$$\frac{27}{4} (cm)$$
解き方
球の体積$V_2$は、$$\begin{align}V2&=\frac{4}{3} \pi \times 3^3\\&=\frac{4}{3} \pi \times 27\\&=36 \pi (cm^3)\end{align}$$次に、円すいの高さを $x$ とすると、円すいの体積 $V_1$ は、$$\begin{align}V_1&=\pi \times 4^2 \times x \times \frac{1}{3}\\&=\frac{16}{3} \pi x\end{align}$$$V_1$と$V_2$が等しいので、$$\begin{align}&V_1=V_2\\&\frac{16}{3} \pi x = 36 \pi\\x &= 36 \times \frac{3}{16}\\&= \frac{27}{4} (cm)\end{align}$$
© tsastyle.com